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Abstract

Optimum design of laminated composite sandwich plates with both continuous (core thickness) and
discrete (layer group fiber angles and thicknesses) design variables subjected to strength constraint is studied
via a two-level optimization technique. The strength of a sandwich plate is determined in a failure analysis
using the Tsai-Wu failure criterion and the finite element method which is formulated on the basis of the
layerwise linear displacement theory. In the first level optimization of the design process, the discrete design
variables are temporarily treated as continuous variables and the corresponding minimum weight of the
sandwich plate is evaluated subject to the strength constraint using a constrained multi-start global opti-
mization method. In the second level optimization, the optimal solution obtained in the first level opti-
mization is used in the branch and bound method for solving a discrete optimization problem to determine
the optimal design parameters and the final weight of the plate. Failure test of laminated composite foam-
filled sandwich plates with different lamination arrangements are performed to validate the proposed optimal
design method. A number of examples of the design of laminated composite foam-filled sandwich plates are
given to demonstrate the feasibility and applications of the proposed method. © 1999 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Due to their many superior mechanical properties, laminated composite sandwich plates have
recently found broad applications in the aerospace and automotive industries. In general, the
structures fabricated with laminated composite sandwich plates are weight sensitive and reliability
stringent. The design of light weight but reliable laminated composite sandwich plates has thus
become an important topic of research. In the past, many researchers have investigated the
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mechanical behaviors of sandwich plates and a number of techniques have been proposed for
sandwich plate analysis (e.g., Pagano, 1970; Whitney, 1972; Pandya and Kant, 1988; Rao and
Meyer-Piening, 1991). Recently, a number of researchers have studied the optimal design of
laminated composite plate/sandwich structures (Vinson and Handel, 1988; Bushnell, 1990; Park,
1982; Olsen and Vanderplaats, 1989; Kodiyalam et al., 1996). For instance, Bushnell (1990)
used conventional numerical optimization techniques for optimal design of truss-core sandwich
structures. Olsen and Vanderplaats (1989) presented a nonlinear discrete optimization method for
minimum weight design of composite sandwich panels. It is noted that the optimal design algo-
rithms presented by Bushnell, and Olsen and Vanderplaats can only yield a single local optimum
solution and sometimes may even have difficulty in searching for the optimum. Kodiyalam et al.
(1996) used the genetic search method for optimal design of composite sandwich structures with
discrete design variables. It has been shown that genetic algorithms may have the potential to
become a viable tool for dealing with discrete optimization problems and the ability of yielding
multiple optima. Despite the successful use of genetic search algorithms in the discrete optimization
of composites, a major drawback of this search technique is that it often requires a prohibitively
high amount of computational time for finite element-based structural optimization problems.
Meaquita and Kamat (1987) used the branch and bound method (Dakin, 1965) to study the
optimal design of stiffened laminated composite plates with frequency constraints in which the
optimization problem was formulated as a nonlinear mixed integer programming problem.
Although, in the past decade, a number of techniques have been developed for the optimal
design of laminated composite structures with discrete design variables, rigorous and practical
mathematical methods for solving nonlinear mixed-discrete optimization problems are not readily
available and more research work is still required.

Recently, Kam and associates have studied the global optimal design of laminated composite
plates (Kam et al., 1996; Kam and Chang, 1992; Kam and Lai, 1995; Kam and Snyman, 1991).
In their study, layer thicknesses and fiber angles were treated as continuous design variables and
their global optimal values were determined using a multi-start global optimization technique. In
this paper, the previously proposed global optimization method is incorporated into the branch
and bound method to formulate a two level optimization technique for conducting the minimum
weight design of thick laminated composite sandwich plates with continuous and discrete design
variables subject to strength constraint. The efficiency of the proposed method in yielding the
global optimum is investigated and the factors that have important effects on the optimal design
parameters and weights of the sandwich plates are identified via a number of examples. The
accuracy of the method in obtaining the global optimal design of laminated composite sandwich
plates is also verified by experimental results. Finally, the applications of the optimal design method
are demonstrated by means of a number of examples of the design of laminated composite sandwich
plates with different loading conditions, aspect ratios, numbers of layer groups and boundary
conditions.

2. Strength analysis of laminated composite sandwich plate

The laminated composite sandwich plate in Fig. 1 is composed of a homogeneous core and two
laminated composite cover sheets. The x and y coordinates of the plate are taken in the midplane
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Fig. 1. Geometry and loading conditions of a laminated composite sandwich plate.

of the core which has a x b and thickness /.. The previously proposed finite element method (Kam
and Jan, 1995) which was formulated on the basis of a layerwise linear displacement theory will
be extended to the sandwich plate analysis. Herein, the sandwich plate is divided into a number of
mathematical layer groups across the plate thickness and the displacement components of each
layer group are assumed to vary linearly. Each layer group may contain a number of plies which
have the same fiber angles. The core of the plate is treated as a layer group in the following
formulation. If necessary, the core can also be divided into a number of layer groups. A brief
description of the method is given as follows:

u =u,+&yY,

and

t i—2
w=ut oYt Y ntl (=246, NP—1)

k=24,
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Fig. 2. Layerwise displacement components and local coordinates of layer groups.

i—2

t .
w=u,—y— Y apt+iw (=3.57.....NP) (M

k=35,

where u; = (i, v, w)" is the vector of displacements of the ith layer group; ¢ is the local coordinate
for the ith layer group; u, is the displacement vector in the mid-plane; ¥, = (., ¥, .)" is the
vector of rotational degrees of freedom of the ith layer group; NP is number of layer groups; ¢; is
the thickness of the ith layer group. It is noted that no summation is performed in the above
equations if (i—2) is less than k. Figure 2 shows the positive directions of &; and v, together with
the displacements of the layer groups across the plate thickness in the x-direction.

Three dimensional stress—strain and strain—displacement relations of the linear elasticity theory
are adopted in deriving the finite element on the basis of the principle of minimum total potential
energy. In the finite element formulation, the plate is discretized into a number of elements which
are connected together via the nodes at the layer groups of the elements. The displacements at any
point in each layer group are obtained via the method of interpolation using the layer nodal
displacements and appropriate shape functions.

u=Na y,=Ny, i=123,...,NP )

where N is a 3 x ND shape function matrix; (*) denotes layer group nodal displacement vector; ND
is number of layer group nodes. Herein, the element stiffness matrix is constructed using a quadratic
(ND = 8) formulation of the serendipity family in which the numerical integration schemes with
2x 2 and 3 x 3 Gauss rules are used for layer rotations in orthotropically or generally laminated
composite face sheets, respectively. As for the sandwich core, 3 x 3 and 2 x 2 Gauss rules are used
for mid-plane displacements and layer rotations, respectively. In the stress analysis, the stresses at
the four corner nodal points in Fig. 1b are obtained from those at the integration points using the
following extrapolation equations,
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where o, (i =1,...,4) are stresses at integration points; o; (i = 5,...,8) are the corresponding

stresses at the corner points. The stresses obtained in the finite element analysis are then used to
evaluate the failure load P, of the laminated composite plate on the basis of the Tsai—Wu criterion
(Tsai and Wu, 1971). It is noted that initial failure may occur in the face sheets or the core
depending on the stress states in those components and the load that causes initial failure in the
sandwich plate is defined as the failure load of the sandwich plate. Other failure modes such as
plate buckling, face wrinkling, etc., which can be easily included in the calculation of the failure
load P., will not be considered in the failure analysis of the laminated composite sandwich plates.
Hereafter, without loss of generality, the failure load is treated as the strength of the sandwich
plate in the following optimal design.

3. Optimal design of sandwich plates

Consider the optimal design of a laminated composite sandwich plate composed of NL layer
groups subjected to the applied load Pf(x,y) where P is the amplitude and f(x,y) the shape
function. The objective is to select the optimal fiber angles and thicknesses of the layer groups in
the cover sheets and the core thickness which yield the minimum weight of the sandwich plate for
a given required strength. Herein, the fiber angles and thicknesses of layer groups in cover sheets
can only take on discrete values while core thickness is treated as a continuous design variable. In
mathematical form, the discrete optimum design problem is stated as

NL—1

minimize W(h,0) = Y pAh,+p.Ah,
i=1

subjectto0 <6, <n 0,=mb, h =0 i=1,...,NI—1
I-1 hi=nh, P.2P h. =20 h<h* ()]

where p., h, are density and thickness of core, respectively; p is density of cover laminates;
0=00,,0,....,0y,_)  h=(h,h,, ... "hy,_,h)" are vectors of fiber angles and thicknesses of layer
groups, respectively; 0, and h, are production constants; A* is the maximum allowable plate
thickness; W is plate weight; N/ is either equal to NL for generally laminated composite sandwich
plates or (NL+1)/2 for symmetrically and anti-symmetrically laminated composite sandwich
plates; m,, n; are positive integers to be determined. It is noted that the strength as well as the
weight of the plate are implicitly dependent on the fiber angles. The core of the sandwich plate is
treated as a layer group and its density a constant. Foam density should be treated as a design
variable if optimal dynamic characteristics of sandwich plates are desired. In the present study,
however, foam density has no effect on the optimal solutions of the laminated composite sandwich
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plates when subjected to strength constraint. The number of layer groups NL and layer group
thicknesses /; may be different from those (NP, t;) adopted in the finite element analysis.

The solution of the above constrained discrete minimization problem will be accomplished using
the approach of two-level optimization. In the first level optimization, the layer group parameters
are temporarily treated as continuous design variables and a constrained multi-start global min-
imization method is used to solve the above minimization problem to attain the transitional global
minimum. In the second level optimization, the transitional global optimal solution is used as the
starting point in the branch and bound method for determining the true global optimal solution
of the problem.

3.1. First level optimization

The above problem of eqn (4) is first converted into an unconstrained minimization problem by
creating the following general augmented Lagrangian

NI

Y eyt il X it 7] (5)

J

Y(0,h, u,n,r,) = W(0,h)+

with

P

—N;
2r

P

¢,=max|:H,(0,h), } i=1,2 H/(h0) =P-P.<0 Hy(h0) =h—h*<0 (6)

where p;, 17;, r, are multipliers; max [*,*] takes on the maximum value of the numbers in the bracket.
Herein, the design parameters (0, h) are treated as continuous variables and equality constraints
in eqn (4) are disregarded in this level of optimization. The update formulas for the multipliers y;,
n;and r, are

W = 2rxt j=1,...,NI

m =42
nooafon+1 max

P {yorp ifr,™ <)

P max : n+ 1 max
| >

(7

p

where the superscript 7 denotes iteration number; ), is a constant; r;** is the maximum value of
r,. The parameters u, 7, ry, 7 and r;** must be determined by the method of trial and error. From
experience, the initial values of the multipliers and the values of the parameters (y,, ¥,"**) are chosen
as

p; =10 j=1,...,NI n/=1.0 ro =04 y=1.25 ry® =100 (8)

P
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The minimum weight design problem of eqn (5) has thus become the solution of the following
unconstrained optimization problem.

Minimize YW(0,h,u,n,r,) withrespect to @ and h
subjectto 0<0,<n i=1,...,NI—1 9)

The solution of the above unconstrained optimization problem is straightforward by using the
previously proposed unconstrained multi-start global optimization algorithm (Kam and Snyman,
1991; Snyman and Fatti, 1987). In general, around eight to ten starting points and six to eight
iterations for each starting point are required to obtain the global optimum. It is noted that if the
solution obtained at this level of optimization satisfies all the constraints in eqn (4), it is then
treated as the true global optimal solution of the problem and the second level optimization is
disregarded.

3.2. Second level optimization

Once the transitional global optimal solution of the first level optimization has been obtained,
the possible values of multipliers m1, for layer group fiber angles are determined as

0,710 .
m,—={|:9:|,|:6:|+1} i=1,...,NI—1 (10)

where [-] denotes the integral part of the number in the bracket. In the present study, it has been
found that for small 0,, say 6, < 10°, the design space is so flat with respect to fiber angles in the
vicinity of the optimum that small perturbations in 0; do not affect the final optimum plate weight.
The final fiber angles can then be determined immediately using the method of rounding in which
the fiber angles obtained in the first level optimization are rounded off to the nearest available
discrete values given in eqn (10). After the above modification, the transitional global optimal
solution used for this level of optimization can be rewritten as (4, h,, ..., hy,_1, h.) and is termed
modified transitional global optimum. The optimization problem at this level then becomes the
determination of the ply numbers of the layer groups of the cover sheets, n;, and core thickness A,
that will minimize the plate weight and also satisfy the constraints in eqn (4).

Minimize W(n,h,) n=(n,,n,,...,ny_,)

Subjectto P.=P n=0
hi=nh, i=1,...,NI—1 h.=0 h<h* (11)

The above nonlinear mixed integer programming problem is then solved by Dakin’s branch and
bound method which has been proved to be well suited to solve large nonlinear mixed integer
programming problems (Gupta and Ravindran, 1983). Herein, Dakin’s algorithm for the solution
of the above problem starts with the modified transitional global optimal solution at node 1. If the
integer variable of ply number #, is nonintegral and takes on the value 4,/h,, it is then divided into
integral and fractional parts, i.c.,
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hye
[lk] and f,, respectively, as

o0

Ny
n = [h} +fi (12)
Since n;, must be an integer, either one of the following two conditions must be satisfied
< | (13)
ne < I,
or
h
n, > [h"}rl (14)

the above conditions make node 1 branching into two subproblems which belong to two different
nodes, say, nodes 2 and 3.
Subproblem A (node 2):

Mlnlmlze W(n, l’lc) n= (I’ll le, ey nN], 1)

Subjectto P.=zP n,=0 i=1,...,NI—1

I
nm[ﬂ he =0 h<h* (15)

Subproblem B (node 3):
Minimize W, h,) n=(n,,n,, ..., 0y )

Subjectto P.=P n,<0 i=1,...,NI—1

Iy
nk<[ﬂ+1 h.>0 h<h* (16)

In the above subproblems, the integrality requirement on the design variables has been removed.
Each of these subproblems are solved by utilizing the forementioned constrained global opti-
mization algorithm in which the modified transitional global optimal solution is used as the single
starting point. In general, around three iterations are required to find the optimal solution for each
subproblem. The above branching process is repeated until all nodes are fathomed and the optimal
solution to the given discrete optimization problem is obtained. It is worth noting that the use of
any of the local optima obtained in the first level optimization as the starting point in the second
level optimization will produce a solution more inferior than that obtained via the above procedure.
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4. Experimental investigation

Five laminated composite foam-filled sandwich plates (¢ = 10 cm) of different layups and core
thicknesses, namely, [05/0.142 cm],, [0°/90°/0°/0.144 cm],, [45°/ —455/0.136 cm],, [455/ —455/0.422
cm],and [45°/ — 455/ —455/0.420 cm],, were manufactured and tested to failure. The cover laminates
were made of graphite/epoxy (Q-1115) prepreg tape supplied by the Toho Co., Japan and the core
was @410-1 C. S. polyurethane foam tape imported from the U.S.A. The on-axis properties of the
cover laminates and cured foam core measured in material directions (x;, X,, x;) were determined
from experiments conducted in accordance with the relevant ASTM standards (1990). The material
properties as well as the densities of the cover laminates and cured foam solid are given in Table
1. The laminated composite foam-filled sandwich plates were fabricated via the vacuum bag
molding approach in which a stack of foam tapes was placed between two cover laminates and the
whole assembly was co-cured in a vacuum. The lamina thickness of the face sheets was 0.015 cm.

The experimental apparatus for strength test of sandwich plates consisted of a 10-ton Instron
testing machine, an acoustic emission (AE) system (AMS3) with two AE sensors, a displacement
gauge (LVDT), two strain gauges, a data acquisition system, a steel load applicator with a spherical
head (radius r = 0.5 cm), and a fixture for clamping a specimen. A sketch of the experimental
setup is shown in Fig. 3. The fixture was made up of two square steel frames. During testing, the
laminated sandwich plate was clamped by the two steel frames which were connected together by
four bolts. It is noted that the clamping method allowed no rotations at the edges of the laminated
plate during loading. A stroke control approach was adopted in constructing the load-deflection
relation for the laminated plate. The loading rate was slow enough for inertia effects to be neglected.
During loading, the displacement gauge and data acquisition system were used to record center
deflections so that the load-displacement curve of the sandwich plate could be determined. Figure
4 shows the load-displacement curves of the [05/0.142 cm],, [0°/90°/0°/0.144 cm], and
[45°/ —455/0.136 cm], sandwich plates produced by the data acquisition system. It is noted that
among the sandwich plates the [45°/ —455/core], plate possessed the largest stiffness at the early
stage of the loading process. In addition, two acoustic emission sensors were used to measure the
stress waves released at the AE sources in each sandwich plate. The measured acoustic emissions
were converted by the AMS3 (AE) system to a set of signal describers such as peak amplitude,
energy, rise time and duration which were then used to identify the failure load of the sandwich
plate. For instance, Fig. 5 shows the energy-applied load diagrams for the [45°/—455/core],
sandwich plate produced by the AMS3 system. Failure loads of the other laminated composite
sandwich plates are listed in Fig. 5. Furthermore, strains along the perpendicular to fiber direction,
¢, and &,, respectively, at some points on the bottom surface of the [0°/90°/0°/core], sandwich plate
were measured via a strain measurement system.

5. Numerical examples and discussion

Before proceeding to the minimum weight design of laminated composite sandwich plates, it is
worth demonstrating the accuracy of the present finite element method in predicting strains and
determining failure loads of laminated composite sandwich plates. The sandwich plates tested in
the previous section were analyzed via the present finite element method using a 4 x 4 mesh over a



Table 1
Material properties of composite lamina and foam solid

Material constants

Strengths (MPa)*

Density
Material E, E,=F; G,=G;; Gy Vi, =Vy3=V;3  Xp Xc Yr=2; Yo=Z: R S=T pkgm™)
Gr/Ep 132.5  7.90 4.20 1.02 0.28 1690.75 1893.64 41.06 206.01 46.1 58.7 1450
Gpa Gpa Gpa Gpa
Foam 1.03 1.03 0.4 0.4 0.30 6.25 10.20 6.25 10.20 3.76 3.76 267.5
solid Gpa Gpa Gpa Gpa

* R, S, T are shear strengths on x,—x;, x,—X,, X,—x; planes, respectively.
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Fig. 4. Experimental load-displacement curves of sandwich plates.

full plate and number of ply groups NP = 7. For comparison purpose, the sandwich plates were
also analyzed using the finite element formulated on the basis of Mindlin plate theory (Kam and
Chang, 1993). In the finite element analysis, both translational and rotational degrees of freedom
at the edges of the sandwich plates were constrained. Figure 6 shows the theoretical and exper-
imental results on strains along and perpendicular to fiber direction (&, &,) at points with coor-
dinates (5.0,4.375) and (4.375, 5.0), respectively, on the bottom surface of the [0°/90°/0°/core],
sandwich plate. It is noted that the present finite element can predict more accurate strains than
the one formulated on the basis of Mindlin plate theory when compared with the experimental
results. The theoretical and experimental failure loads together with the specific strengths, which
are defined as the ratios of failure loads to plate weights, are listed in Table 2 for comparison.
Again for the two finite element methods, the present finite element can yield much better results
when compared with the experimental results and the Mindlin type finite element in general
overestimates the strengths of the sandwich plates. For instance, the present finite element method
yields an error of 2.81% for the [05/0.142 cm], plate in contrast with the error of 10.56% yielded
by the Mindlin type finite element for the same case. Therefore, the present finite element method
using the 4 x 4 mesh will be adopted in the following optimal design of composite sandwich plates.
The theoretical and experimental results show that both fiber angles and number of layer groups
have significant effects on the strength of the sandwich plates. The effects of fiber angles are
reflected by the fact that the specific strength of the [45°/ —455/0.136 cm], plate is higher than those
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Fig. 5. Load-energy relations derived from AE system for the [45°/ —455 /core], plate.

of the [05/0.142 cm], and [0°/90°/0°/0.144 cm], plates while those of number of layer groups are
demonstrated by the fact that the specific strength of the [45°/ —455/455/0.42 cm], plate which has
three layer groups in each face laminate is higher than that of the [455/—455/0.422 cm], plate
which has only two layer groups in each face laminate.

The minimum weight design of symmetrically laminated composite sandwich plates with different
loading conditions, aspect ratios, numbers of layer groups and boundary conditions are performed
using the material properties listed in Table 1. The boundary conditions of simple supports and
clamped edges for laminated composite sandwich plates are shown in Fig. 7. The production
constants of fiber angle and ply thickness for cover laminates are set as 0, = n/36 rad (or 5°) and
h, = 0.015 cm, respectively, and the maximum allowable plate thickness is #* = 2.5 cm. The use
of the present optimal design method is first illustrated via an example of the design of a clamped
square (a = 10 cm) symmetrically laminated composite sandwich plate composed of seven layer
groups and subjected to uniform load P = 420 N cm 2. In the first level optimization, a number
of local optima including the transitional global optimum were obtained via the constrained global
optimization algorithm. For comparison purposes, each of the local optimal solutions obtained in
the first level optimization for the laminated composite sandwich plate was used separately in the
second level optimization to determine the ‘final’ optimal solution and the results are listed in
Table 3. It is noted that the use of the transitional global optimal solution in the second level
optimization gives the least weight for the sandwich plate. The process of obtaining the true global
optimal solution using the transitional global optimal solution as an initial guess in the second
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level optimization is described as follows. The layer group fiber angles are rounded off to the
nearest available discrete values to give the modified transitional global optimum [
455 /455 5/2455, ,/0.903 cm], where the subscript for each fiber angle denotes the number of plies
in that layer group. The modified transitional global optimal solution is then used in the second
level optimization to determine the true optimal layer group ply numbers and core thickness as
schematically shown in Fig. 8. It is noted that the branch and bound method of Fig. 8 started the
search from node 1 by treating the number of plies #, of the first layer group as an integer variable.
At node 2 an inferior design was obtained from the plate comprising less number of layer groups,
1.e., NL reduces from 7 to 5 and n, = 0. The true optimal solution was obtained at node 4 in which
the optimal values of the design variables are n, = 1, n, = 1, n; = 21, and s, = 0.898 cm. If the
number of plies 75 of the third layer group instead of n, of the first layer group was treated as an
integer variable at node 1, more nodes had to be fathomed before the true optimal solution could
be identified at node 6 as shown in Fig. 9. It is worth pointing out that since the critical layer
group, where failure is likely to occur, has the most significant effect on the convergence of the
solution, the choice of the number of plies #; of the critical layer group as an integer variable at
node 1 will expedite the search process and thus reduce the number of nodes to be fathomed. In
general, the true optimal solution only deviates slightly from the modified transitional optimal
solution and the optimal solution can be obtained efficiently via the search process of fathoming
a few nodes. The optimal solutions for the clamped and simply supported laminated composite
sandwich plates with different numbers of layer groups subjected to the uniform load of intensity
P =420 N cm~? are given in Tables 4 and 5. It is noted that aspect ratio has more significant



Table 2

Theoretical and experimental failure loads of sandwich plates

Theoretical

Present method

Mindlin theory

Experimental

(iii) First-ply

Difference

Specific Specific failure Specific
Sandwich plate () P, (N) strength (ii)) P, (N)  strength load (N) strength  |(iii) — (1)/(iii)| %  |(iii) — (i1)/(ii1)| Yo
[05/0.142 cm], 452.5 21.92 486.68 23.57 440.21 21.32 2.81 10.56
[45°/—455/0.136 cm], 508.6 25.04 578.61 28.36 516.74 25.44 1.56 11.97
0°/90°/0°/0.144 cm], 468.6 22.58 531.7 25.62 450.23 21.69 4.06 18.10
[455)—455/0.422 cm], 1238.9 27.95 1349.4 30.44 1199.2 27.05 3.32 12.53
[45°/—455/455/0.420 cm],  1289.6 29.16 1408.5 31.85 1269.2 28.70 1.61 10.98
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Wo=0
y y V=0
l//zi=
b b 0
Uo=0
Vo=( Uo=0 Wo=0
Wo=0 o=
V=0 Wo=0 Vyi=0
x= Wi=0
Vi=0
Vyi=o0 Vi=0
'//zi=0 e < .
(All edges) 0 a 0 Vo=0 a
Wo=0
Vii=0
Vi=0
(a) Clamped edges (b) Simple support

Fig. 7. Boundary conditions of sandwich plates.

effects on the optimal design parameters of the clamped sandwich plates than on those of the
simply supported ones. For instance, the fiber angles of the cover laminates of the clamped plates
change from 90° for b/a = 0.5 to +45° for b/a = 1.0 as shown in Table 4 while those of the simply
supported plates change from around +70° to +45° as shown in Table 5. Irrespective to the aspect
ratio and the type of boundary conditions, an increase in number of layer groups decreases the
weight of the laminated composite sandwich plates. The decrease of plate weight, however, tends
to slow down when the number of layer groups reaches nine. It is worth noting that the use of
small number of layer groups can reduce the manufacturing time for laminated composite sandwich
plates and thus make the products more economical. It is also worth noting that the differences
between the transitional optimal weights at the first level optimization and the true optimal weights
at the second level optimization are negligible (<0.5%). This implies that the process of rounding
off the transitional optimal fiber angles to the nearest integer at the second level optimization is
reasonable and acceptable. Furthermore, it is also easy to realize that excellent results can still
obtained even when the final optimal ply number of layer groups are determined using the method
of rounding at the second level optimization. It is noted that for any of the optimally designed
sandwich plates the inner most layer groups which are adjacent to the core contain most of the
plies in the plate. For instance, the fourth layer group of the [107 —255/—255/—357/4055/0.693
cm], plate in Table 5 contains 35 plies with fiber angle of 40°. Thus, the layup of uneven ply
distribution in layer groups is generally better than that of even ply distribution. It is also interesting
to study the effects on plate weight induced by the removal of the total plate thickness constraint.
Table 6 lists the optimal solutions for the uniformly loaded square sandwich plates without the
constraint on plate thickness. It is noted that irrespective to the boundary conditions the total
number of plies in the cover sheets of any of the sandwich plates reduces drastically while the core
thickness increases significantly. For instance, the number of plies in the upper cover sheet of the



Table 3
Local optima of clamped square sandwich plate subjected to uniform load

Optimal solution

1 2 3 4
First level Layup [30.574/—50.675/45.05,,/0.916  [44.87,/—45.27,4/—45.07,0/ [0.555/90.255/0.2504/  *[43.20.,/—45.07,/44.85,/
optimization ~ Weight**  cm]; 0.894 cm], 0.912cm], 0.903 cm],

153.41 151.36 148.42 147.49
Second level Layup [309/—505/455,/0.928 cm], [459/—455,/0.890 cm], [09/905/05,/0.909 cm], [457/—455/455,/0.898 cm],
optimization ~ Weight 153.74 151.84 149.01 148.09

* Transitional global optimum; ** weight in gm; ¢ = 10 cm, P = 420 N cm ™2,
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(0.9, 1.2, 20.7, 0.903)s
W=147.49 gm node 1
n <0 m>1
Inferior (1, 1.1, 21.1, 0.895)s de 3
node 2 Solution W=148.81 gm node
n,<1 n,>2
1, 1,21, 0.898)s (1, 2, 20, 0.902)s node 5
node 4 (W=148.09 gm) W=148.32 gm

Optimal Solution

Fig. 8. Tree representation of search procedure with n, being treated initially as an integer.

(0.9, 1.2,20.7,0.903)s
node 1 W=147.49 gm
n, <20 n,>21
(0.72, 2.2, 20, 0.905)s (0.75, 1.3, 21, 0.895)s
node2 | T3 5148 11 gm W=148.81 gm node 3
n, $ 0 n, > n, >
node 4 node 5 node 6 node 7

Inferior (1,2, 20, 0.902)s 1,21, 0.898)s (0.67, 2,20.7, 0.892)s
Solution W=148.32 gm W—l 8.09 gm W=149.01 gm

Optimal solutlon
n, 2
node 9

Inferior (1,2, 20, 0.902)s
Solution W=148.32 gm

node 8

Fig. 9. Tree representation of search procedure with n; being treated initially as an integer.

clamped square sandwich plate of NL = 5 in Table 6 reduces from 24 to 8 and the plate weight
gains a 25% reduction when compared with the square plate of NL = 5 in Table 4.

Next, consider the optimal design of centrally loaded and symmetrically laminated composite
sandwich plates. The optimal solutions for the plates with different boundary conditions, numbers



Table 4

Optimal solutions for clamped and uniformly loaded laminated composite sandwich plates designed for minimum weight

Number of layer groups

NL =35 NL=17 NL=9
First level Second level First level Second level First level Second level
optimization optimization optimization optimization optimization optimization
Aspect Weight Weight Weight
ratio Weight* Weight difference Weight Weight  difference Weight Weight difference
bla Solution @ Solution (1) (II-1/T)%  Solution 08} Solution 1) (II-I/T)%  Solution  (I) Solution  (II) I1-1/1)%
0.5 [905 /905 4/ 40.99 [907/0.970 cm],  41.10  0.27 [905.,/905 ¢/ 40.99 [907/0.970 cm], 41.10 0.27 [905.6/905 5/ 40.99 [905/ 41.10 0.27
0.974 cm] 905 4/0.974 cm], 905 £/905 4/ 0.970 cm],
0.974 cm],
1.0 [44.955/ 151.36 [455/—453,/ 15191  0.36 [43.254/ 147.49 [457/—457/ 148.09  0.41 [43.25/ 14426 [459/ 14481 0.38
—45.25:,/ 0.888 cm], —45.07,/ 453,/ —45%,/ —455/455/
0.894 cm], 44854/ 0.898 cm], 43.27 ¢/ —45%/
0.903 cm] —44.875.,/ 0.918 cm],
0.924 cm]
1.2 [23.5%6/ 203.49 [255/—205,/ 204.09 0.29 [—10.25,/ 194.59 [—105/155/05, 195.20  0.31 [9.255/ 194.30 [105/—105/195.13 0.42
—19.751,/ 0.821 cm], 13.855/2.175, 0.845 cm], —11.25,/ 156/0%4/
0.828 cm] 0.852 cm]; 13.85/ 0.843 cm],
1.5%3.6/
0.848 cm]

* Weight in gm; ¢ = 10 cm, P, = 410 N cm 2.
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Table §

Optimal solutions for simply supported and uniformly loaded laminated composite sandwich plates designed for minimum weight

Number of layer groups

NL=5 NL=17 NL=9
First level Second level First level Second level First level Second level
optimization optimization optimization optimization optimization optimization
Aspect Weight Weight Weight
ratio Weight* Weight difference Weight Weight  difference Weight Weight difference
bla Solution @ Solution (1) (II-I/T)%  Solution @ Solution 1 (II-I)T)%  Solution  (I) Solution  (II) (I1-1/1)%
0.5 [72.15 4/ 44.46 [703/— 603/ 44.58 0.27 [72.254/ 43.68 [707/—603/ 43.79 0.23 [71.25,/  43.48 [707/ 4359  0.25
—61.55,/ 1.100 cm], —61.055/ 705/ —59.17%/ —603/
1.104 cm], 70.75.6/ 1.071 cm], 74256/ 757 =703/
1.075 cm] —70.75.5/ 1.063 cm],
1.067 cm]
1.0 [44.95 5/ 187.48 [455/—455,/ 188.07 0.32 [43.255/ 183.66 [457/—457/ 18426  0.33 [43.255/  180.22 [459/ 180.82 0.33
—45.2%,5/ 0.751 em], —45.07,/ 455,/ —45.07,/ —455/45%/
0.756 cm] 448500/ 0.761 cm], 43.25,/ —455/
0.766 cm], —44.85,,/ 0.778 cm]
0.783 cm]
1.2 [31.29,/ 245.87 [305/—305,/ 246.59  0.29 [33.37,/ 242.19 [357/—457/ 24298  0.33 [12.154/  241.97 [109/ 242.85 0.34
—29.85,,/ 0.670 cm], —46.154/ —2056/ —24.65 ¢/ —25%/
0.675 cm] —21.255, 0.695 cm], —35.39,/ —357/
0.699 cm] 40.25,/ 4055/
0.696 cm] 0.693 cm]

*Weight in gm; ¢ = 10 cm. P, = 420 N cm 2.
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Table 6

Optimal solutions of uniformly loaded square sandwich plates with different boundary conditions

Boundary NL=5 Weight* NL =17 Weight NL=9 Weight
Clamped edges [45,/ —454/1.475 cm]; 113.71 [45,/—45,/45,/1.401 cm];  109.75 [45,/—45,/45,/—455/1395 cm], 11943
Simple supports [455/ —454/1.573 cm] 123.31 [45,/—45,/45,/1.551 cm],  122.13 [45,/—45,/45,) —45¢/1.546 cm],  121.86

*Weight in gm; (a/b) = 1, P, = 420 N cm 2.
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Table 7

Optimal solutions for clamped and centrally loaded laminated composite sandwich plates designed for minimum weight

Number of layer groups

NL=5 NL=17 NL=9
First level Second level First level Second level First level Second level
optimization optimization optimization optimization optimization optimization
Aspect Weight Weight Weight
ratio Weight* Weight difference Weight Weight  difference Weight Weight difference
bla Solution @ Solution (1) (II-I/T)%  Solution @ Solution 1 (II-I)T)%  Solution  (I) Solution  (II) (I1-1/1)%
0.5 [64.3G,/ 33.89 [657/—75¢/ 33.98 0.27 [—59.755/ 33.60 [—607/ 33.69 0.27 [—58.955/ 33.60 [—607/ 3151 0.27
—76.2¢,/ 0.703 cm], 6515/ 657/—1755/ 63.77, 657/
0.708 cm], —74.82,/ 0.692 cm], —74.15 ¢/ —753%/
0.697 cm], —75.45,/ 0.692 cm],
0.697 cm]
1.0 [44.95 4/ 51.54 [455/—455/ 51.76 0.43 [45.154/ 51.11  [457/ 51.39 0.55 [45.05,/  51.22 [459/ 51.28  0.11
—45.05,/ 0.561 cm], —45% 4/ —455/455/ —45.0p.5/ —455/45%/
0.565 cm] 45.055/ 0.554 cm], 45.07 5/ —453/
0.557 em], —44.85,/ 0.552 cm]
0.551 em]
1.2 [48.67 4/ 60.77 [509/—153/ 60.83 0.11 [14.67 ¢/ 60.50 [157/—507/ 60.64 0.23 [14.15,/  60.48 [157/ 60.64 0.27
—14.55,/ 0.541 cm] —47.95 4/ 153/ —49.99,/ —507/
0.540 cm] 15.256/ 0.538 cm] 14.85,/ 155/
0.544 cm], 1529,/ 0.538 cm]
0.540 cm]

*Weight in gm; ¢ = 10 cm, P, = 2000 N.
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Table 8

Optimal solutions for simply supported and centrally loaded laminated composite sandwich plates designed for minimum weight

Number of layer groups

NL=5 NL=17 NL=9
First level Second level First level Second level First level Second level
optimization optimization optimization optimization optimization optimization
Aspect Weight Weight Weight
ratio Weight* Weight difference Weight Weight  difference Weight Weight difference
bla Solution @ Solution (1) (II-I/T)%  Solution @ Solution 1 (II-I)T)%  Solution  (I) Solution  (II) (I1-1/1)%
0.5 [59.255/ 34.54 [607/ 34.59 0.14 [—60.25 ¢/ 34.19 [—607/ 34.43 0.70 [—59.956/ 3419 [—607/ 3443 0.70
—72.65,/ — 753/ 58.30/ 605/ 59.555 607/
0.732 cm] 0.726 cm], —76.735/ —753%/ —74.95 ,/ —753%/
0.719 cm] 0.714 cm], —76.25,/ 0.714 cm],
0.719 em],
1.0 [45.15,/ 56.27 [455/ 56.49 0.40 [44.95 5/ 55.63  [457/ 55.85 0.41 [44.505/  55.60 [459/ 5574 0.25
—45.05/ —453/ —45.076/ —453/ —45.045.0/ —45%/
0.572 cm] 0.568 cm] 45155/ 453/ 45275/ 455/ —453)/
0.560 cm], 0.556 cm] —44.65 ,/ 0.554 cm]
0.557 em]
1.2 [48.9G 5/ 67.20 [507/ 67.33 0.19 [15.204/ 66.17 [157/ 66.37 0.30 [15.655/ 6598 [157/ 66.18  0.31
—14.9¢,/ —153/ —50.65 ,/ —507/25%/ —49.65 4/ —507/
0.567 cm] 0.561 cm], 24.95,/ 0.546 cm], 22.57 ¢/ 209/255/
0.551 em], 26.25 6/ 0.543 cm]
0.548 cm]

*Weight in gm; ¢ = 10 cm, P, = 2000 N.
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of layer groups and aspect ratios subjected to P = 2000 N are listed in Tables 7 and 8. It is noted
that most of the features observed previously for the case of uniform load are still valid for the
present case. The optimal weight of the centrally loaded sandwich plates generally converges at
NL = 9. The inmost layer groups of the cover sheets of the plates contain relatively large number
of plies comparing to the other layer groups. The differences between the transitional optimal
weights obtained at the first level optimization and the true optimal weights at the second level
optimization are negligible. Again this implies that the use of the method of rounding in determining
the final optimal design variables at the second level optimization is viable and can give excellent
results. Unlike the case of uniform load, the adopted boundary conditions only have slight effects
on the layups and weights of the centrally loaded sandwich plates. It is also noted that the
theoretical optimal layups for clamped square laminated composite sandwich plates being the
combination of +45° plies has been validated by the experimental results which have indeed shown
that the specific strength of the [45°/—455/0.136 cm], plate is higher than those of the [05/0.142
cm], and [0°/90°/0°/0.144 cm], plates. Furthermore, the experimental results of the [455/455/0.422
cm], and [45°—455/455/0.420 cm], sandwich plates have also verified the fact that an increase in
the number of layer groups of a sandwich plate increases the strength of the plate or conversely
reduces the plate weight for achieving the same strength.

6. Conclusion

A two level optimization method was presented to study the minimum weight design of laminated
composite sandwich plates subject to strength and side constraints. The effectiveness of the pro-
posed method in determining the optimal discrete values of layer group thicknesses and fiber angles
was demonstrated via a number of examples of the design of uniformly loaded and symmetrically
laminated composite sandwich plates. Experiments of centrally loaded and symmetrically lami-
nated composite sandwich plates were performed to further verify the accuracy of the present
method. Effects of loading condition, boundary condition, core thickness, aspect ratio and number
of layer groups on the optimal solution of laminated composite sandwich plates were studied via
a number of examples. It was found that all of the above parameters might have effects to certain
degrees on the optimal solution of the plates. In particular, without altering the strength of a
laminated composite sandwich plate, an increase in core thickness could reduce the cover sheet
thicknesses and the plate weight significantly. Without altering the total number of plies in the
sandwich plate, an increase in layer group number could also reduce the plate weight. The use of
the present method in designing laminated composite sandwich plates could greatly reduce the
number of layer groups and thus shorten manufacturing time. It was also shown that the optimal
design process could be greatly simplified while excellent results could still be obtainable with the
use of the method of rounding at the second level of optimization. In this study, it was found that
the plate weight tended to converge as the number of layer groups reached nine. The experimental
and theoretical results presented in this paper are useful for problem verification as well as practical
applications.
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